pofff.jobs.data module
Script to write the benchmark data
- pofff.jobs.data.compute_m_c(dig, dil)
Normalized total variation of the concentration field within Box C
- Args:
dig (dict): Global dictionary
dil (dict): Local dictionary
- Returns:
dil (dict): Modified local dictionary
- pofff.jobs.data.create_from_summary(dig, dil)
Use the summary arrays for the sparse data interpolation
- Args:
dig (dict): Global dictionary
dil (dict): Local dictionary
- Returns:
dil (dict): Modified local dictionary
- pofff.jobs.data.dense_data(dig)
Generate the dense data within the benchmark format
- Args:
dig (dict): Global dictionary
- Returns:
None
- pofff.jobs.data.generate_arrays(dig, dil, names, t_n)
Arrays for the dense data
- Args:
dig (dict): Global dictionary
dil (dict): Local dictionary
names (list): Strings with the quantities for the spatial maps
t_n (int): Index for the number of restart file
- Returns:
dil (dict): Modified local dictionary
- pofff.jobs.data.main()
Postprocessing to generate the benchmark data
- pofff.jobs.data.map_to_report_grid(dil, names)
Map the simulation grid to the reporting grid
- Args:
dil (dict): Local dictionary
names (list): Strings with the quantities for the spatial maps
- Returns:
dil (dict): Modified local dictionary
- pofff.jobs.data.read_opm(dig)
Read the simulation files using OPM
- Args:
dig (dict): Global dictionary
- Returns:
dig (dict): Modified global dictionary
- pofff.jobs.data.sparse_data(dig)
Generate the sparse data within the benchmark format
- Args:
dig (dict): Global dictionary
- Returns:
None
- pofff.jobs.data.write_dense_data(dig, dil, n)
Map the quantities to the cells
- Args:
dig (dict): Global dictionary
dil (dict): Local dictionary
n (int): Number of csv file
- Returns:
None
- pofff.jobs.data.write_sparse_data(dig, dil)
Write the sparse data
- Args:
dig (dict): Global dictionary
dil (dict): Local dictionary
- Returns:
None