pyopmnearwell.ml.nn module
Transform ensemble data into datasets and train neural networks.
- pyopmnearwell.ml.nn.build_model(hp: HyperParameters, ninputs: int, noutputs: int, lr_tune: float = 0.1) Module
Build and compile a FCNN with the given hyperparameters.
- Parameters:
hp (keras_tuner.Hyperparameters) – Hyperparameters object.
ninputs (int) – Number of inputs.
noutputs (int) – Number of outputs.
- Returns:
The built neural network model.
- Return type:
tf.Module
- pyopmnearwell.ml.nn.get_FCNN(ninputs: int, noutputs: int, depth: int = 5, hidden_dim: int = 10, saved_model: str | None = None, activation: Literal['sigmoid', 'relu', 'tanh'] = 'sigmoid', kernel_initializer: Literal['glorot_normal', 'glorot_uniform'] = 'glorot_normal', normalization: bool = False) Model
Return a fully connected neural network with the specified architecture.
- Parameters:
ninputs (int) – Number of inputs to the model.
noutputs (int) – Number of outputs from the model.
depth (int, optional) – Number of hidden layers in the model. Defaults to 5.
hidden_dim (int, optional) – Number of neurons in each hidden layer. Defaults to 10.
saved_model (str, optional) – Path to a saved model to load weights from. Defaults to None.
activation (Literal["sigmoid", "relu", "tanh"], optional) – Activation function to use in the hidden layers. Defaults to “sigmoid”.
kernel_initializer (Literal["glorot_normal", "glorot_uniform"], optional) – Weight initialization method to use in the hidden layers. Defaults to “glorot_normal”.
normalization (bool, optional) – Whether to use batch normalization in the model. Defaults to False.
- Returns:
A fully connected neural network.
- Return type:
keras.Model
- pyopmnearwell.ml.nn.get_GRU(ninputs: int, noutputs: int, units: int = 20, saved_model: str | None = None, activation: Literal['sigmoid', 'relu', 'tanh'] = 'tanh', kernel_initializer: Literal['glorot_normal', 'glorot_uniform'] = 'glorot_uniform') Model
Return a recurrent neural network with the specified architecture.
- Parameters:
ninputs (int) – Number of inputs to the model.
noutputs (int) – Number of outputs from the model.
units (int, optional) – Size of internal model state. Defaults to 20.
hidden_dim (int, optional) – Number of neurons in each hidden layer. Defaults to 10.
saved_model (str, optional) – Path to a saved model to load weights from. Defaults to None.
activation (Literal["sigmoid", "relu", "tanh"], optional) – Activation function to use in the hidden layers. Defaults to “sigmoid”.
kernel_initializer (Literal["glorot_normal", "glorot_uniform"], optional) – Weight initialization method to use in the hidden layers. Defaults to “glorot_normal”.
- Returns:
A fully connected neural network.
- Return type:
keras.Model
- pyopmnearwell.ml.nn.get_LSTM(ninputs: int, noutputs: int, units: int = 20, saved_model: str | None = None, activation: Literal['sigmoid', 'relu', 'tanh'] = 'tanh', kernel_initializer: Literal['glorot_normal', 'glorot_uniform'] = 'glorot_uniform') Model
Return a recurrent neural network with the specified architecture.
- Parameters:
ninputs (int) – Number of inputs to the model.
noutputs (int) – Number of outputs from the model.
units (int, optional) – Size of internal model state. Defaults to 20.
hidden_dim (int, optional) – Number of neurons in each hidden layer. Defaults to 10.
saved_model (str, optional) – Path to a saved model to load weights from. Defaults to None.
activation (Literal["sigmoid", "relu", "tanh"], optional) – Activation function to use in the hidden layers. Defaults to “sigmoid”.
kernel_initializer (Literal["glorot_normal", "glorot_uniform"], optional) – Weight initialization method to use in the hidden layers. Defaults to “glorot_normal”.
- Returns:
A fully connected neural network.
- Return type:
keras.Model
- pyopmnearwell.ml.nn.get_RNN(ninputs: int, noutputs: int, units: int = 20, saved_model: str | None = None, activation: Literal['sigmoid', 'relu', 'tanh'] = 'tanh', kernel_initializer: Literal['glorot_normal', 'glorot_uniform'] = 'glorot_uniform') Model
Return a recurrent neural network with the specified architecture.
- Parameters:
ninputs (int) – Number of inputs to the model.
noutputs (int) – Number of outputs from the model.
units (int, optional) – Size of internal model state. Defaults to 20.
hidden_dim (int, optional) – Number of neurons in each hidden layer. Defaults to 10.
saved_model (str, optional) – Path to a saved model to load weights from. Defaults to None.
activation (Literal["sigmoid", "relu", "tanh"], optional) – Activation function to use in the hidden layers. Defaults to “sigmoid”.
kernel_initializer (Literal["glorot_normal", "glorot_uniform"], optional) – Weight initialization method to use in the hidden layers. Defaults to “glorot_normal”.
- Returns:
A fully connected neural network.
- Return type:
keras.Model
- pyopmnearwell.ml.nn.handle_zeros_in_scale(scale: Tensor | ndarray) ndarray
Set scales of near constant features to 1.
Note: This behavior is in line with sklearn.preprocessing.MinMaxScaler.
- Parameters:
scale (ArrayLike) – The scale array.
- Returns:
The modified scale array.
- Return type:
np.ndarray
- pyopmnearwell.ml.nn.save_tune_results(tuner: Tuner, savepath: str | Path) None
- pyopmnearwell.ml.nn.scale_and_evaluate(model: Model, model_input: Tensor | ndarray, scalingsfile: str | Path) Tensor
Scale the input, evaluate with the model and scale the output.
- Parameters:
model (tf.keras.Model) – A Keras model to evaluate the input with.
model_input (ArrayLike) – Input tensor. Can be a batch.
scalingsfile (str | pathlib.Path) – The path to the CSV file containing the scaling parameters for MinMaxScaling.
- Returns:
The model’s output, scaled back to the original range.
- Return type:
tf.Tensor
- Raises:
FileNotFoundError – If
scalingsfiledoes not exist.ValueError – If
scalingsfilecontains an invalid row.
- pyopmnearwell.ml.nn.scale_and_prepare_dataset(dsfile: str | Path, feature_names: list[str], savepath: str | Path, train_split: float = 0.9, val_split: float | None = 0.1, test_split: float | None = None, shuffle: Literal['first', 'last', 'false'] = 'first', feature_range: tuple[float, float] = (-1, 1), target_range: tuple[float, float] = (-1, 1), scale: bool = True, **kwargs) tuple[tuple[ndarray, ndarray], tuple[ndarray, ndarray]] | tuple[tuple[ndarray, ndarray], tuple[ndarray, ndarray], tuple[ndarray, ndarray]]
Scale, shuffle and split a dataset.
- Parameters:
dsfile (str | pathlib.Path) – Dataset file.
feature_names (list[str]) – List of feature names.
savepath (pathlib.Path) – Savepath for the scaling values.
train_split (float, optional) – Train split. Defaults to 0.9.
val_split (float, optional) – Val split. Defaults to 0.1.
test_split (float, optional) – Test split. Defaults to None.
shuffle (Literal["first", "last", "false"], optional) –
Options for shuffling the dataset:
”first”: The dataset gets shuffled before the split.
”last”: The dataset gets shuffled after the split.
”false”: The dataset does not get shuffled.
Defaults to “first”.
feature_range (tuple[float, float], optional) – Target range of feature scaling. Defaults to (-1, 1).
target_range (tuple[float, float], optional) – Target range of target scaling. Defaults to (-1, 1)
scale (bool, optional) – Whether to scale the dataset. Defaults to True.
- Returns:
- tuple[tuple[np.ndarray, np.ndarray], tuple[np.ndarray, np.ndarray]]
- tuple[ tuple[np.ndarray, np.ndarray], tuple[np.ndarray, np.ndarray], tuple[np.ndarray, np.ndarray],
- ]: Tuple of scaled and split dataset. Includes test set only if
test_split > 0.
- pyopmnearwell.ml.nn.train(model: Model, train_data: tuple[Tensor | ndarray, Tensor | ndarray], val_data: tuple[Tensor | ndarray, Tensor | ndarray], savepath: str | Path, lr: float = 0.1, epochs: int = 500, bs: int = 64, patience: int = 100, lr_patience: int = 10, kerasify: bool = True, loss_func: Literal['mse', 'MeanAbsolutePercentageError', 'MeanSquaredLogarithmicError'] = 'mse', recompile_model: bool = True, **kwargs) None
Train a tensorflow model on the provided training data and save the best model.
- Parameters:
model (tf.Module) – Model to be trained.
train_data (tuple[ArrayLike, ArrayLike]) – Training features and targets.
val_data (tuple[ArrayLike, ArrayLike]) – Validation features and targets.
savepath (pathlib.Path) – Savepath for models and logging.
lr (float, optional) – Initial learning rate. Defaults to 0.1.
epochs (_type_, optional) – Training epochs. Defaults to 500.
bs (int, optional) – Batch size. Defaults to 64.
patience (int, optional) – Number of epochs without improvement before early stopping. Defaults to 100.
lr_patience (int, optional) – Number of epochs without improvement before lr decay. Defaults to 10.
kerasify (bool, optional) – Export the best model with kerasify after training. Defaults to True.
loss_func (Literal["mse", "MeanAbsolutePercentageError", "MeanSquaredLogarithmicError"], optional) – Loss function. Defaults to “mse”.
recompile_model (bool, optional) – Whether to recompile the model before training. Can e.g., be set to false, if the model is built and compiled by a different function. Defaults to True.
**kwargs – Get passed to the
model.fit()method.
- Returns:
None
- pyopmnearwell.ml.nn.tune(ninputs: int, noutputs: int, train_data: tuple[Tensor | ndarray, Tensor | ndarray], val_data: tuple[Tensor | ndarray, Tensor | ndarray], savepath: str | Path, objective: Literal['loss', 'val_loss'] = 'val_loss', max_trials: int = 5, executions_per_trial: int = 1, sample_weight: Tensor | ndarray = array([1.]), lr_tune: float = 0.1, **kwargs) tuple[Model, Tuner]
Tune the hyperparameters of a neural network model using random search.
- Parameters:
ninputs (int) – Number of input features to the model.
noutputs (int) – Number of output features to the model.
train_data (tuple[ArrayLike, ArrayLike]) – Tuple of training input and target data.
val_data (tuple[ArrayLike, ArrayLike],) – Tuple of validation input and target data.
objective (Literal["loss", "val_loss"], optional) – Objective for search. Defaults to
"val_loss".max_trials (int) – Default is 5.
executions_per_trial (int) – Default is 1.
sample_weight – (ArrayLike): Default is
np.array([1.0]).**kwargs – Get passed to the tuner’s search method.
- Returns:
The model compiled with the best hyperparameters. keras_tuner.Tuner: The tuner.
- Return type:
tf.Module
- Raises:
ValueError – If train_data or val_data is not a tuple of two tensors.