pycopm.utils.mapping_methods module
Methods to create modified (coarser, finner, submodels, transformations) OPM files.
- pycopm.utils.mapping_methods.add_pv_bc(dic)
Add the pore volume from outside the submodel on the xy directions
- Args:
dic (dict): Global dictionary
- Returns:
dic (dict): Modified global dictionary
- pycopm.utils.mapping_methods.chop_grid(dic)
Extract the corresponding subgrid
- Args:
dic (dict): Global dictionary
- Returns:
dic (dict): Modified global dictionary
- pycopm.utils.mapping_methods.coarsening_dir(dic)
Get the coarsening directions
- Args:
dic (dict): Global dictionary
- Returns:
dic (dict): Modified global dictionary
- pycopm.utils.mapping_methods.find_neighbors(dic, ind, i_d, n, s)
Find the neighbouring cells to distribute the removed pore volume
- Args:
dic (dict): Global dictionary
ind (list): Indices os cells to distribute the pore volume
i_d (int): Index of the removed cell to distribute its pore volume
n (int): Current increased index for the neighbours search
s (int): Shift to neighbours cells
- Returns:
ind (list): Indices os cells to distribute the pore volume
dic (dict): Modified global dictionary
- pycopm.utils.mapping_methods.get_ijk(dic, i_d)
Return the i,j, and k index from the global index
- Args:
dic (dict): Global dictionary
i_d (int): Index of the removed cell to distribute its pore volume
- Returns:
i,j,k (int): i,j, and k cell indices
- pycopm.utils.mapping_methods.handle_clusters(dic)
Create the coarser clusters
- Args:
dic (dict): Global dictionary
- Returns:
dic (dict): Modified global dictionary
- pycopm.utils.mapping_methods.handle_cp_grid(dic)
Handle the pillars and zcord for the coarser grid
- Args:
dic (dict): Global dictionary
- Returns:
dic (dict): Modified global dictionary
- pycopm.utils.mapping_methods.handle_pv(dic, clusmin, clusmax, rmv)
Make sure the pore volume is not created nor destroyed, only distributed
- Args:
dic (dict): Global dictionary
clusmin (pandas dataFrame): Mask with all active cells in cluster
clusmax (pandas dataFrame): Mask with at least one active cell in cluster
rmv (pandas dataFrame): Mask to remove cells by the argument flag jump
- Returns:
dic (dict): Modified global dictionary
- pycopm.utils.mapping_methods.handle_refinement(dic)
Create the refinement objects
- Args:
dic (dict): Global dictionary
- Returns:
dic (dict): Modified global dictionary
- pycopm.utils.mapping_methods.handle_vicinity(dic)
Create the vicinity objects
- Args:
dic (dict): Global dictionary
- Returns:
dic (dict): Modified global dictionary
- pycopm.utils.mapping_methods.handle_zcorn(dic, ir)
Process the zcorn
- Args:
dic (dict): Global dictionary
ir (list): Z coordinates from the corners
- Returns:
ir (list): Modified z coordinates
- pycopm.utils.mapping_methods.map_ijk(dic)
Create the mappings to the new i,j,k indices
- Args:
dic (dict): Global dictionary
- Returns:
dic (dict): Modified global dictionary
- pycopm.utils.mapping_methods.map_properties(dic, actnum, z_t, z_b, z_b_t, v_c)
Mapping to the coarsened properties
- Args:
dic (dict): Global dictionary
actnum (array): Integers with the active cells
z_t (array): Floats with the top cell z-center position
z_b (array): Floats with the bottom cell z-center position
z_b_t (array): Floats with the maximum cell z difference
v_c (array): Floats with the cell volumes
- Returns:
dic (dict): Modified global dictionary
clusmin (array): True for clusters with at least one inactive cell
clusmax (array): True for clusters with at least one active cell
rmv (array): Indices for the cells to remove
- pycopm.utils.mapping_methods.map_vicinity(dic)
Properties to the vicinity
- Args:
dic (dict): Global dictionary
- Returns:
dic (dict): Modified global dictionary
- pycopm.utils.mapping_methods.refine_grid(dic)
Refine the reservoir grid
- Args:
dic (dict): Global dictionary
- Returns:
dic (dict): Modified global dictionary
- pycopm.utils.mapping_methods.transform_grid(dic)
Transform the reservoir grid
- Args:
dic (dict): Global dictionary
- Returns:
dic (dict): Modified global dictionary